Take b = 2.

b^(n-1) mod n = 1.

59 is prime.

b^((n-1)/59)-1 mod n = 36267, which is a unit, inverse 37990.

11 is prime.

b^((n-1)/11)-1 mod n = 63441, which is a unit, inverse 8935.

(11 * 59) divides n-1.

(11 * 59)^2 > n.

n is prime by Pocklington's theorem.